Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.

نویسندگان

  • Yuping Liu
  • Xiaoyun He
  • Damien Hanlon
  • Andrew Harvey
  • Umar Khan
  • Yanguang Li
  • Jonathan N Coleman
چکیده

Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage properties of solution-processed MoS2/carbon nanotube anodes. Nanotube addition gives up to 10(10)-fold and 40-fold increases in electrical conductivity and mechanical toughness, respectively. The increased conductivity results in up to a 100× capacity enhancement to ∼1200 mAh/g (∼3000 mAh/cm(3)) at 0.1 A/g, while the improved toughness significantly boosts cycle stability. Composites with 20 wt % nanotubes combine high reversible capacity with excellent cycling stability (e.g., ∼950 mAh/g after 500 cycles at 2 A/g) and high rate capability (∼600 mAh/g at 20 A/g). The conductivity, toughness, and capacity scale with nanotube content according to percolation theory, while the stability increases sharply at the mechanical percolation threshold. We believe that the improvements in conductivity and toughness obtained after addition of nanotubes can be transferred to other electrode materials, such as silicon nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes

Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

SnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries

Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...

متن کامل

Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries.

Flexible lithium-ion batteries are necessary for powering the next generation of wearable electronic devices. In most designs, the mechanical flexibility of the battery is improved by reducing the thickness of the active layers, which in turn reduces the areal capacity and energy density of the battery. The performance of a battery depends on the electrode composition, and in most flexible batt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 2016